Long-time existence for Yang–Mills flow

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Smooth long-time existence of Harmonic Ricci Flow on surfaces

We prove that at a finite singular time for the Harmonic Ricci Flow on a surface of positive genus both the energy density of the map component and the curvature of the domain manifold have to blow up simultaneously. As an immediate consequence, we obtain smooth long-time existence for the Harmonic Ricci Flow with large coupling constant.

متن کامل

Long-time Existence and Convergence of Graphic Mean Curvature Flow in Arbitrary Codimension

Let f : Σ1 7→ Σ2 be a map between compact Riemannian manifolds of constant curvature. This article considers the evolution of the graph of f in Σ1×Σ2 by the mean curvature flow. Under suitable conditions on the curvature of Σ1 and Σ2 and the differential of the initial map, we show that the flow exists smoothly for all time. At each instant t, the flow remains the graph of a map ft and ft conve...

متن کامل

Hyperbolic geometric flow (I): short-time existence and nonlinear stability

In this paper we establish the short-time existence and uniqueness theorem for hyperbolic geometric flow, and prove the nonlinear stability of hyperbolic geometric flow defined on the Euclidean space with dimension larger than 4. Wave equations satisfied by the curvatures are derived. The relation of hypergeometric flow to the Einstein equation and the Ricci flow is

متن کامل

Long time behavior of leafwise heat flow for Riemannian foliations

For any Riemannian foliation F on a closed manifold M with an arbitrary bundle-like metric, leafwise heat flow of differential forms is proved to preserve smoothness on M at infinite time. This result and its proof have consequences about the space of bundle-like metrics on M , about the dimension of the space of leafwise harmonic forms, and mainly about the second term of the differentiable sp...

متن کامل

Refined Long-time Asymptotics for Some Polymeric Fluid Flow Models

We consider a polymeric fluid model, consisting of the incompressible Navier-Stokes equations coupled to a non-symmetric Fokker-Planck equation. First, steady states and exponential convergence to them in relative entropy are proved for the linear Fokker-Planck equation in the Hookean case. The FENE model is also addressed proving the existence of stationary states and the convergence towards t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Inventiones mathematicae

سال: 2019

ISSN: 0020-9910,1432-1297

DOI: 10.1007/s00222-019-00877-2